On the distinctness of modular reductions of maximal length sequences modulo odd prime powers
نویسندگان
چکیده
منابع مشابه
On the distinctness of modular reductions of maximal length sequences modulo odd prime powers
We discuss the distinctness problem of the reductions modulo M of maximal length sequences modulo powers of an odd prime p, where the integer M has a prime factor different from p. For any two different maximal length sequences generated by the same polynomial, we prove that their reductions modulo M are distinct. In other words, the reduction modulo M of a maximal length sequence is proved to ...
متن کاملOn Modular Galois Representations modulo Prime Powers
On modular Galois representations modulo prime powers Chen, Imin; Kiming, Ian; Wiese, Gabor Published in: International Journal of Number Theory DOI: 10.1142/S1793042112501254 Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Citation for published version (APA): Chen, I., Kiming, I., & Wiese, G. (2013). On modular Galois representations modulo prime power...
متن کاملLectures on Modular Galois Representations Modulo Prime Powers
This is a sketch of the content of my three lectures during the PhD School Modular Galois Representations Modulo Prime Powers, held in Copenhagen from 6/12/2011 until 9/12/2011, organised by Ian Kiming. Thanks Ian! 1 Modular Forms Modulo Prime Powers Modular forms, in their classical appearance (19th century! Eisenstein, Weierstraß, Jacobi, Poincaré, etc.) and in the way one usually gets to kno...
متن کاملCongruences modulo Prime Powers
Let p be any prime, and let α and n be nonnegative integers. Let r ∈ Z and f (x) ∈ Z[x]. We establish the congruence p deg f k≡r (mod p α) n k (−1) k f k − r p α ≡ 0 mod p ∞ i=α ⌊n/p i ⌋ (motivated by a conjecture arising from algebraic topology), and obtain the following vast generalization of Lucas' theorem: If α > 1 and l, s, t are nonnegative integers with s, t < p, then 1 ⌊n/p α−1 ⌋! k≡r (...
متن کاملGeneralized Fibonacci Sequences modulo Powers of a Prime
Let us begin by defining a generalized Fibonacci sequence (gn) with all gn in some abelian group as a sequence that satisfies the recurrence gn = gn−1 + gn−2 as n ranges over Z. The Fibonacci sequence (Fn) is the generalized Fibonacci sequence with integer values defined by F0 = 0 and F1 = 1. Recall also the Binet formula: for any integer n, Fn = (α − β)/ √ 5, where α = (1 + √ 5)/2 and β = (1− ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2008
ISSN: 0025-5718,1088-6842
DOI: 10.1090/s0025-5718-08-02075-9